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Abstract 
 
In this paper the question is addressed how alternative data sources, such as administrative and social 
media data, can be used in the production of official statistics. Since most surveys at national statistical 
institutes are conducted repeatedly over time, a multivariate structural time series modelling approach is 
proposed to model the series observed by a repeated surveys with related series obtained from such 
alternative data sources. Generally, this improves the precision of the direct survey estimates by using 
sample information observed in preceding periods and information from related auxiliary series. The 
concept of cointegration is applied to address the question to which extent the alternative series represent 
the same phenomena as the series observed with the repeated survey. The methodology is applied to the 
Dutch Consumer Confidence Survey and a sentiment index derived from social media by Daas and Puts 
(2014). 
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1. Introduction 

National statistical institutes traditionally use probability sampling in combination with 
design-based or model-assisted inference for the production of official statistics. The 
concept of random probability sampling has been developed mainly on the basis of the 
work of Bowley (1926), Neyman (1934) and Hansen and Hurwitz (1943).  See for 
example Cochran (1977) or Särndal et al. (1992) for an extensive introduction in 
sampling theory. This is a widely accepted approach, since it is based on a sound 
mathematical theory that shows how under the right combination of a random sample 
design and estimator, valid statistical inference can be made about large finite 
populations based on relative small samples. In addition, the amount of uncertainty by 
relying on small samples can be quantified through the variance of the estimators. 

There is persistent pressure on national statistical institutes to reduce administration 
costs and response burden. In addition, declining response rates stimulate the search 
for alternative sources of statistical information. This could be accomplished by using 
administrative data like tax registers, or other large data sets – so called big data - that 
are generated as a by-product of processes not directly related to statistical production 
purposes. Examples of these include time and location of network activity available 
from mobile phone companies, social media messages from Twitter and Facebook and 
internet search behaviour from Google Trends. A common problem with this type of 
data sources is that the process that generates the data is unknown and likely selective 
with respect to the intended target population. A challenging problem in this context is 
to use this data for the production of official statistics that are representative of the 
target population. There is no randomized sampling design that facilitates the 
generalization of conclusions and results obtained with the available data to an 
intended larger target population. Hence, extracting statistically relevant information 
from these sources is a challenging task (Daas and Puts, 2014a). 

Baker et al. (2010) address the problem of using non-probability samples and mention 
the possibility of applying design-based inference procedures to correct for selection 
bias. Buelens, Burger and Van den Brakel (2015) explore the possibility of using 
statistical machine learning algorithms to correct for selection bias. Instead of replacing 
survey data for administrative data or big data, these sources can also be used to 
improve the accuracy of survey data in model-based inference procedures. Marchetti 
et al. (2015) and Blumenstock, Cadamuro and On  (2015) used big data as a source of 
auxiliary information for cross-sectional small area estimation models. 

Many surveys conducted by national statistical institutes are conducted repeatedly. In 
this paper a multivariate structural time series modelling approach is applied to 
combine the series obtained by a repeated survey with series from alternative data 
sources. This serves several purposes. First, a model based estimation procedure based 
on a time series model increases the precision of the direct estimates by using the 
temporal correlation between the direct estimates in the separate editions of the 
survey. The use of time series modelling with the aim of improving the precision of 
survey data has been considered by many authors dating back to Blight and Scott 
(1973). Second, extending the time series model with an auxiliary series allows to 
model the correlation between the unobserved components of the structural time 
series models, e.g. trend and seasonal components. If the model detects strong 
positive correlations between these components, then this might further increase the 
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precision of the time series estimates for the sample survey. Harvey and Chung (2000) 
propose a time series model for the Labour Force Survey in the UK extended with a 
series of claimant counts. Third, the concept of cointegration in the context of 
multivariate state space models can be used to evaluate to which extent both series 
are identical. If the trend components of two observed series are cointegrated, then 
both series are driven by one underlying common trend. Although clearly weaker 
compared to the theory underlying probability sampling, it can be argued that if an 
auxiliary series is cointegrated with the series of the survey, they represent the same 
underlying stochastic process.  

The Dutch Consumer Confidence Survey (CCS) is a monthly survey based on 
approximately 1000 respondents with the purpose of measuring the sentiment of the 
Dutch population about the economic climate by means of the so-called Consumer 
Confidence Index (CCI). Daas and Puts (2014b) developed a sentiment index, 
independently of the CCS, that is derived from social media platforms that was found 
to mimic the CCI very well. This index is referred to as the Social Media Index (SMI). In 
this paper the aforementioned multivariate structural time series modelling approach 
is applied to both series in an attempt to improve the precision of the CCI.   

In Section 2, the survey design of the CCS and the estimation procedure for the  CCI is 
described. The approach followed by Daas and Puts (2014b) to construct a sentiment 
index from social media platforms is also described. In section 3 a structural time series 
model for the CCI series and SMI series is proposed. Results obtained with the model 
are presented in Section 4. The paper concludes with a discussion in Section 5. 
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2. Data 

2.1 Dutch Consumer Confidence Survey 
 

The Consumer Confidence Index (CCI) is based on a monthly survey, called the 
Consumer Confidence Survey (CCS), and measures the opinion of households residing 
in the Netherlands about the economic climate in general and their own financial 
situation.  The CCS is a continuous survey. Each month a self-weighted sample of 
approximately 2500 households is drawn by stratified two-stage sampling from a 
sample frame derived from the Dutch Municipal Register. Households for which a 
known telephone number is available are contacted by an interviewer who completes 
the questionnaire by computer assisted telephone interviewing during the first ten 
working days of the month. On average a net sample of about 1000 responding 
households is obtained. 

The CCI is based on five questions that can be answered positively, neutral or 
negatively. The questions refer to the economic or financial situation in the last 12 
month or the respondents expectations in the future 12 months. Let ��,�

� , ��,�
� , and ��,�

� ,
denote the percentage of respondents that answered question � = 1, … , 5, in month t
positively, neutral or negatively, respectively. Now the CCI is defined as the difference 
between the percentage of positive and negative respondents, averaged over the five 
questions:  

�� = �
� � ���,�

� − ��,�
� ��

��� . (1) 

Since the sample is self-weighted, and no auxiliary information is used in the 
estimation procedure, the percentages are estimated with the sample mean, i.e. 

��,�
� = ���

��
� ��,�,�

�����  ,        (2) 

for question  � = 1, … , 5, and answer category � = 1, 2, 3. In (2) �� is the net sample 
size in month t, and  ��,�,�

� is a dummy indicator that is equal to one if respondent i
chose category j to question q. Assuming simple random sampling without 
replacement for the households, Van den Brakel (2002) proved that  the variance of (1) 
can be estimated by 

���(��) = �
�� � �������,�

� � + ������,�
� ���

��� − �
�� � � ���(��,�

� , ��,�
��)�

����
�
���  

+ �
�� � � [��� ���,�

� , ��,�
��� + ��� ���,�

� , ��,�
���]�

����
�
���  ,  (3) 

with 

������,�
� � = �

��
��,�

� (100 − ��,�
� ),

��� ���,�
� , ��,�

��� = �
��

(���,�
��� − ��,�

� ��,�
��),

��� ���,�
� , ���,�

�� � = �
��

(����,�
��� − ��,�

� ���,�
�� ),

������,�
� , ���,�

� � = − �
��

��,�
� , ���,�

� ,

����,�
��� = ���

��
� ��,�,�

� ��,��,�
������ .
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Figure 1 shows the CCI with a 95% confidence interval calculated using the approach 
described in this section, observed during the period December 2000 through March 
2015. In October 2013 the official publication of the CCI is missing. 
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Figure 1: Consumer confidence index (CCI) with a 95% confidence interval 

2.2 Social media sentiment 
 
In an attempt to reduce administration costs and response burden, Daas and Puts 
(2014b) developed a sentiment index from social media sources that could be used as 
an alternative indicator for the CCI. They used messages posted on the most popular 
social media platforms in the Netherlands, written in the Dutch language. These 
messages are classified as containing positive, neutral, or negative messages using a 
variant of sentence-level based classification (Pang and Lee, 2008). An index is 
calculated by taking the difference between the percentage of positive and negative 
messages.  

Combinations of all Facebook and Twitter messages with and without certain filters on 
phrases were compared with the CCI. The combination of all publicly available  
Facebook messages together with filtered Twitter messages containing personal 
pronouns had the highest correlation with the CCI. The Twitter messages had to be 
filtered due to the fact that a lot of Twitter messages are not very informative. See 
Daas and Puts (2014b) for further details. In their research Daas and Puts (2014b) also 
found that major changes in the behaviour of the public on social media, such as those 
caused by huge events and changes in the number of messages posted on each 
platform, have a disturbing effect on the series. The final indicator proposed is the 
average of the sentiment in the Facebook and Twitter messages during each period. 

In Figure 2 the Social Media Index (SMI) is compared with the CCI for the period June 
2010 until March 2015. Both series are clearly on a different level but show a more or 
less similar evolution. During the presented period, the CCI is always negative, while 
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the SMI is always positive. Many factors are responsible for this difference since the 
CCI is based on a survey where data collection is conducted by telephone and the SMI 
is based on classifying messages on Twitter and Facebook. The interesting question is 
to which extent the evolution of both series is similar.  
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Figure 2 comparison of the Social media index (SMI, upper panel) with the Consumer 
confidence index (CCI, lower panel). 
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3. Structural time series modeling of the CCI and 
the SMI 

In this section univariate and bivariate structural time series models for the CCI and 
SMI are developed. With a structural time series model a series is decomposed in a 
trend component, seasonal component, other cyclic components, regression 
component and an irregular component. For each component a stochastic model is 
assumed. This allows the trend, seasonal, and cyclic component but also the regression 
coefficients to be time dependent. If necessary ARMA components can be added to 
capture the autocorrelation in the series beyond these structural components. See 
Harvey (1989) or Durbin and Koopman (2012) for details about structural time series 
modelling. 

The question addressed in this paper is to which extent the SMI follows a similar 
pattern as the CCI such that the SMI can be used in the estimation procedure of the CCI 
or, in the most extreme case, even can replace the CCI. This question is addressed by 
developing a bivariate structural time series model for the CCI and the SMI and 
modeling the correlation between the disturbance terms of the different components 
of the structural time series model for both series. The concept of cointegration is used 
to investigate to which extent the unobserved components of both series are driven by 
common factors. If e.g. the trends of both series are driven by one underlying common 
trend an argument can be made that the SMI represents similar evolution of sentiment 
feelings compared to the CCI.  Alternatively, the SMI can be used as an auxiliary series 
in a model based estimation procedure for the CCI. 

3.1 Univariate model CCI series 
 

As a first step a univariate time series model for the CCI series is proposed. With the 
design-based approach described in Section 2.1 the sample information observed in 
each separate month is used to obtain an estimate for the CCI in that month. A 
drawback of this approach is that information observed in preceding periods is not 
used to obtain more accurate estimates for the CCI. In survey methodology, time series 
models are frequently applied to develop estimates for periodic surveys. Blight and 
Scott (1973) and Scott and Smith (1974) proposed to regard the unknown population 
parameters as a realization of a stochastic process that can be described with a time 
series model. This introduces relationships between the estimated population 
parameters at different time points in the case of non-overlapping as well as 
overlapping samples. The explicit modelling of this relationship between these survey 
estimates with a time series model can be used to combine sample information 
observed in the past to improve the precision of estimates obtained with periodic 
surveys. Some key references to authors that applied the time series approach to 
repeated survey data to improve the efficiency of survey estimates are Scott et al. 
(1977), Tam (1987), Binder and Dick (1989, 1990), Bell and Hillmer (1990), Tiller (1992), 
Rao and Yu (1994), Pfeffermann and Burck (1990), Pfeffermann (1991), Pfeffermann 
and Bleuer (1993), Pfeffermann et al. (1998), Pfeffermann and Tiller (2006), Harvey and 
Chung (2000), Feder (2001), Harvey and Chung (2000) and Van den Brakel and Krieg 
(2009, 2015). 
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Developing a time series model for survey estimates observed with a periodic survey 
starts with a model, which states that the survey estimate can be decomposed in the 
value of the population variable and a sampling error: 

 �� = �� + ��, (4) 

where �� denote the real CCI in month t under a complete enumeration of the target 
population and �� the sampling error.  

The CCI is observed at a monthly frequency. Therefore, as a first step, the series of the 
finite population parameter can be decomposed in a stochastic trend, seasonal 
component to model systematic deviations from the trend within a year, and a white 
noise component for the remaining unexplained variation. These considerations lead to 
the following model for the series of the finite population parameter: 

�� = �� + �� + ��, (5) 

where �� denotes a stochastic trend, �� a stochastic seasonal component and �� the 
unexplained variation of the finite population parameter. Inserting (5) into 
measurement model (4) gives  

�� = �� + �� + �� + ��, (6) 

In a cross-sectional survey it is difficult to separate the sampling error from the white 
noise of the population parameter. Therefore both components are combined in one 
disturbance term 

 �� = �� + ��. (7) 

It is assumed that �(��) = 0. To allow for nonhomogeneous variance in the sampling 
errors it is assumed that the variance of �� is proportional to the sampling variance of 
��, i.e. 

���(��) = ���(��)��� , (8) 

where ���(��) is defined by (3) and is used as a-priori information in the time series 
model.   

An extensive model selection showed that a smooth trend model is the most 
appropriate model to capture the trend and the economic cycle in the CCI series. The 
smooth trend model is defined as (Durbin and Koopman, 2012): 

�� = ���� + ��,

�� = ���� + �� ,

E��� � = 0,         (9) 

������ , ��� � = ���� if � = �′
0 if � ≠ �′.

The seasonal component is modelled with a trigonometric model, which is defined as 
(Durbin and Koopman, 2012): 

�� = � ������� , (10)  

with 

��� = ����� cos���� + ������ sin���� + ��� ,
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���� = −����� sin���� + ������ cos���� + ���� .

Here �� denotes the frequency of the different cycles in radians and is defined as 

 �� = ���
�� , for j=1,…,6.

For the disturbance terms, it is assumed that 

����� � = 0, ������ � = 0,

������ , ��� � = ���� if � = �′
0 CD E G EF .

For reasons of parsimony, the same variance structure is assumed with the same 
hyperparameter for PQ�� . Furthermore it is assumed that P� and PQ� are uncorrelated. 
To model unexplained serial correlation in the residuals 7�, AR and MA components 
can be added to the structural time series model (6). In this application there were no 
indications that such components are required. The model selection procedure 
however indicated that two level interventions are needed to model sudden jumps in 
the series. The first one is due the financial crisis in September 2008, and the second 
one is due to the economic downturn in September of 2011. Finally an outlier is 
required for September 2007. These considerations lead to the following model for the 
observed CCI series 


� 	 4� % 5� % T�U���U % T�V���V % T������ % 7�, (11) 

with 

���U 	 A
 CD E 	 �11W!@"
1 CD E G �11W!@" ,  ���V 	 A
 CD E X �11Y!@"

1 CD E Z �11Y!@" ,  

���� 	 A
 CD E X �1

!@"
1 CD E Z �1

!@" , 

and T[ the corresponding regression coefficients. 

3.2 Bivariate model CCI and SMI series 
 

The next step is to combine the univariate model for the CCI with the series for the 
SMI. The main purpose of combining the series of the CCI with the series of the SMI is 
to investigate to which extent both series are cointegrated. The most straightforward 
approach to combine the series of the CCI with the series of the SMI is to extend (11) 
with an additional regression component, say T\� , where \� is the observed series of 
the SMI and T the corresponding regression component. This approach is not useful in 
this application since investigating whether both series are cointegrated requires a 
bivariate model that allows for correlation between slope disturbances of the trend 
and disturbances of the seasonal components. An additional drawback of adding the 
SMI series as a regression component in (11) is that the auxiliary series will partially 
explain the trend and seasonal effect in 
� leaving only a residual trend and seasonal. 
This hampers the estimation of a trend or a seasonal component for the CCI. The trend 
could be considered as an alternative for a seasonal adjusted release for the CCI. 

Before combining CCI and SMI in a bivariate model, a univariate model for the SMI is 
developed with the purpose to better understand the behaviour of this series. An 
extensive model selection procedure indicated that the observed series for the SMI can 
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be modelled with a smoothed trend and a white noise component for the unexplained 
variation. No significant seasonal component is established. These considerations led 
to a bivariate model for the CCI and SMI where the CCI contains a trend and a seasonal 
component and the SMI a trend component. The disturbance terms of the trend of 
both series are correlated. Since the series for the SMI is available from June 2010, the 
model for the CCI also contains the last intervention for September 2011, but not the 
outlier in September 2007 and the intervention in September 2008. As a result the 
following bivariate model is obtained: 

���
��

� = ����

���
� + ����� + ���������+� ���

���
�, (12) 

with ��� and ��� the smooth trend model as defined in (9) with covariance structure 

�������, ���� � = ����� if � = �′
0 CD E G EF, '()�=�a� =�+a � 	 A9Ba

� CD E 	 EF
1 CD E G EF,

'()�=�̀� =�+a � 	 c9B`9BadB CD E 	 EF
1 CD E G EF.

In the last expression dB denotes the correlation between the slope disturbances of 
the CCI and SMI. Furthermore, 5�̀ is the seasonal effect defined by (10) and ���� the 
intervention for September 2011 with T�� the corresponding regression coefficient. 
Finally 7�̀ and 7�a are the disturbance terms for the CCI and SMI series and are defined 
as: 

8!7�̀" 	 8!7�a" 	 1,

'()�7�̀ � 7�+` � 	 A�� !
�"9:�̀ CD E 	 EF
1 CD E G EF ,  '()�7�

a� 7�+a� 	 A9:a� CD E 	 EF
1 CD E G EF , 

'()�7�̀ � 7�+a� 	 1 for all t and t’.

If the model detects a strong correlation between the trends of the CCI and the SMI, 
then the trends of both series will develop into the same direction more or less 
simultaneously. In this case the additional information from the SMI series will result in 
an increased precision of the estimates of the CCI figures. In the case of strong 
correlation between the disturbances of the trends, i.e. if dB e 
, the trends are said 
to be cointegrated. In that case there is one underlying common trend that drives the 
evolution of the trends of the two observed series. To see this, it is noted that the 
covariance matrix of the slope disturbances is implemented as a Choleski 
decomposition: 

f() _=�̀=�ab 	 g 9B�̀ 9B`9BadB
9B`9BadB 9Ba�

h 	 -
 1
� 
. ]

i� 1
1 i�

^ -
 �
1 
.. (13) 

Instead of estimating 9B�̀ , 9Ba� , and dB , parameters i�, i�, and � are estimated. If 
i� e 1, it follows that dB e 
. In that case the covariance matrix of the slope 
disturbances is of reduced rank and both trends are driven by one common trend. This 
implies that the slope disturbances of both series simultaneously move up or down and 
that the slope disturbances of the SMI can be perfectly predicted from slope 
disturbances of the CCI by =�a 	 �=�̀. Furthermore, the slope for the SMI series can be 
expressed as a linear combination of the slope for the CCI series as <�a 	 �<�̀ % <j.
Similarly the trend for the SMI series can be expressed as a linear combination of the 
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trend for the CCI series as ��� = ���� + �� + ���. Note that �� and �� are constants that are 
derived from the estimated states at the last two time periods of the series.  

Cointegration increases the precision of the estimated trend and signal of the CCI 
series, allows for formulating more parsimonious models, but could also be seen as an 
argument to replace the CCI series by the SMI series since both series are driven by and 
represent the same common trend. For a more detailed discussion about cointegration 
in the context of state-space modelling, see Koopman, Harvey, Shephard and Doornik 
(2009, sections 6.4 and 9.1). 

3.3 Estimation of structural time series models 
 

The general way to analyse a structural time series model, is to express it in the so-
called state space representation and apply the Kalman filter to obtain optimal 
estimates for the state variables, see e.g. Durbin and Koopman (2012). The software 
for the analysis and estimation of the time series models is developed in Ox in 
combination with the subroutines of SsfPack 3.0, see Doornik (2009) and Koopman, 
Shephard and Doornik (2008). 

All state variables are non-stationary and initialised with a diffuse prior, i.e. the 
expectation of the initial states are equal to zero and the initial covariance matrix of 
the states is diagonal with large diagonal elements. In Ssfpack 3.0 an exact diffuse log-
likelihood function is obtained with the procedure proposed by Koopman (1997). 
Maximum likelihood estimates for the hyperparameters, i.e. the variance components 
of the stochastic processes for the state variables are obtained using a numerical 
optimization procedure (BFGS algorithm, Doornik, 1998). To avoid negative variance 
estimates, the log-transformed variances are estimated. More technical details about 
the analysis of state-space models can be found in Harvey (1989) or Durbin and 
Koopman (2001). 

Under the assumption of normally distributed disturbance terms, the Kalman filter can 
be applied to obtain optimal estimates for the state variables, see e.g. Durbin and 
Koopman (2012). The Kalman filter assumes that the variance and covariance terms  
are known in advance and are often referred to as hyperparameters. In practise these 
hyperparameters are not known and are therefore substituted with their ML 
estimates. Estimates for state variables for period t based on the information available 
up to and including period t are referred to as the filtered estimates. They are obtained 
with the Kalman filter where the ML estimates for the hyperparameters are based on 
the complete time series. The filtered estimates of past state vectors can be updated, if 
new data become available. This procedure is referred to as smoothing and results in 
smoothed estimates that are based on the complete time series.  

Standard errors of the Kalman filter estimates do not reflect the additional uncertainty 
of using the ML estimates for the unknown hyperparameters. Therefore the estimates 
of the standard errors are too optimistic. 
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4. Results 

4.1 Univariate model CCI series 
 
The univariate analysis is based on model (11) from Section 3.1 applied to the series of 
the CCI obtained from December 2000 until March 2015. In Table 1 the ML estimates 
for the hyperparameters of the model are specified.  

In the upper panel of Figure 3, the smoothed trend plus interventions are compared 
with the direct estimates for the CCI. In the lower panel of Figure 3, the smoothed 
signal, defined as trend plus interventions plus seasonals, are compared with the direct 
estimates for the CCI. In the series of the smoothed trend and interventions, the 
seasonal effect, the white noise of the population parameter and the sampling error is 
removed from the original series. It follows from Figure 3 that with the time series 
model a more stable estimate for the CCI can be obtained. The filtered trend plus 
interventions is compared with the smoothed estimates in Figure 4. This filtered series 
approximate what would be obtained in the production of official statistics if no 
revisions would be published. It follows that even in this case a considerable part of the 
high frequency variation and seasonal fluctuations can be removed. 

Figure 5 shows the smoothed seasonal pattern of the CCI series. It follows from the 
upper panel that the pattern is time invariant. In the lower panel the seasonal effects 
for the months in 2014 are shown. There are clear significant negative effects in the 
October, November and December and clear positive effects in January and August. 
Given the definition of the consumer confidence index and the way it is operationalized 
in the questionnaire, it is remarkable that there is a clear significant seasonal pattern. 
All questions refer to the respondents financial and economic situation over the last 12 
month or the expectations for the future 12 months. If respondents would interpret 
the questions as intended, a pronounced seasonal pattern would not occur. This is an 
indication that answers given by the respondents are clearly driven by a much shorter 
emotion, which is among other things subject to seasonal fluctuations. 

In Figure 6 the standard error of the direct estimates for the CCI are compared with the 
standard errors of the filtered and smoothed trend plus interventions. The spikes in the 
standard error of the filtered and smoothed estimates are the result of the 
intervention variables and the missing observation in 2013. If at a certain point in time 
an intervention variable is activated, a new regression coefficient has to be estimated. 
This results in additional uncertainty in the model estimates, and shows up as a sudden 
peak in the standard error of the filtered and smoothed trend. In 2013 one observation 
is missing, which also results in additional uncertainty since the state space model 
produces a prediction for this missing value.  

The standard errors of the smoothed estimates are slightly larger than the standard 
errors of the direct estimates. The standard errors of the filtered estimates are 
considerably larger than the standard errors of the direct estimates. This is a 
remarkable result. Filtered and smoothed estimates based on the time series model 
are based on a considerably larger set of information since sample information from 
preceding periods (in the case of filtered estimates) or the entire series (in the case of 
smoothed estimates) are used to obtain an optimal estimate for the monthly CCI. The 
direct estimates, on the other hand, are based on the observed sample in that 
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particular month only. Most applications where structural time series models are 
applied as a form of small area estimation, result in substantive reductions of the 
standard error compared to the direct estimates, see e.g. Van den Brakel and Krieg 
(2009, 2015) and Bollineni-Balabay, van den Brakel and Palm (2015). 

 

Standard deviation ML estimate 
Trend (�� ) 1.18 
Seasonal  (�� ) 0.0025 
Measurement equation  (�� ) 2.01 
Table 1: Maximum Likelihood estimates hyperparameters univariate model CCI 
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Figure 3: smoothed trend plus interventions compared with direct estimates CCI (upper 
panel) and smoothed signal compared with direct estimator (lower panel) 

 
Figure 4: Filtered trend plus interventions compared with smoothed trend plus 
interventions CCI 
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Figure 5: Smoothed seasonal pattern CCI for the complete series (upper panel) and the 
months of 2014 (lower panel). 

 

Figure 6: Standard error smoothed and filtered trend plus interventions compared with 
direct estimates CCI 
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the disturbance term proportional to the variance of the direct estimates, as expressed 
by (8), would result in a maximum likelihood estimate for �� that is approximately 
equal to one. From Table 1 it follows that �� is equal to 2. This is a strong indication 
that the variance of the white noise component in the true population variable exceeds 
the variance of the sampling error. The direct estimator for the CCI derived in Section 2 
considers the CCI in each particular month as a fixed but unknown variable. The 
variance of the direct estimator only measures the uncertainty since a small sample 
instead of the entire population is observed to estimate the CCI. It does not measure 
the high frequency variation of the population value over time. This explains why the 
time series modelling approach does not result in a reduction of the standard error of 
the estimated CCI. A time series model is, however, still useful to filter a more stable 
long term trend from the high frequency variation in the population parameter and the 
sampling error. 

4.2 Bivariate model for CCI and SMI series 
 

In this section, the bivariate model (12) proposed in Section 3.2 is applied to the series 
of the CCI and SMI, which are available from June 2010 until March 2015. Maximum 
likelihood estimates for the hyperparameters are specified in Table 2. The model 
detects a strong positive correlation of about 0.92 between the slope disturbances of 
the CCI and the SMI. There is, however, no indication that both trends are cointegrated 
and share one common trend. A likelihood ratio test is applied to further investigate 
the significance of the correlation between the slope disturbances in the bivariate 
model. If the correlation parameter is set to zero, the log likelihood drops from -229.9 
to -233.9. The p-value of the corresponding likelihood ratio test equals 0.0047, 
indicating that the correlation between the trends of both series is clearly significantly 
different from zero and should not be removed from the bivariate model. If the 
correlation parameter is set equal to one (by choosing �� in (13) equal to zero), the log 
likelihood drops from -229.9 to -242.1. The p-value of the corresponding likelihood 
ratio test with one degree of freedom equals zero, indicating that the trends are not 
cointegrated.  
 

Standard deviation ML estimate 
Trend CCI (��� ) 1.24 

Seasonal CCI  (�� ) 7.5E-6 
Trend SMI (���) 0.25 

Measurement equation CCI  (��� ) 2.28 
Measurement equation SMI  (���) 0.86 
Correlation trend CCI and SMI (�� ) 0.92 
Table 2: Maximum Likelihood estimates hyperparameters bivariate model CCI and SMI 

 

Figure 7 compares the smoothed estimates for the slope of the CCI (x axis) and SMI (y 
axis) under the model without correlation, the model with an ML estimate for the 
correlation (�� = 0.92) and the common trend model with �� = 1.0. The model with 
uncorrelated slopes shows a clearly positive correlation between the slopes if both 
series are estimated independently (left panel Figure 7). This is picked up by the model 
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that allows for correlation (mid panel Figure 7). There is however a clear deviation 
between the slopes of both series, which can be seen if the cross-plot of the model 
with a correlation estimated with ML (mid panel Figure 7) is compared with the cross-
plot of a common factor model (right-panel Figure 7). 
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Figure 7: Cross-plot smoothed slopes CCI (x-axis) and SMI (y-axis) for a model without 
correlation (left panel), correlation estimated with ML (mid panel) and correlation set 
equal to one (right panel) 

 

Figure 8 compares the observed SMI series with the smoothed trend obtained under 
the bivariate model. Figure 9 compares the direct estimates for the CCI series with the 
smoothed trend plus intervention under the univariate model and the bivariate model. 
As follows from Figure 9, the level and evolution of the smoothed estimates for the CCI 
series are almost identical under the univariate and bivariate model. 
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Figure 9: CCI comparison of the direct estimates and smoothed trend plus intervention 
under the bivariate and univariate model for CCI 

 

Figure 10 compares the standard errors of the direct estimates for the CCI series with 
the smoothed trend plus intervention under the univariate model and the bivariate 
model. For a fair comparison, the results for the univariate model and bivariate model 
are based on series of equal length. Therefore the univariate model is re-estimated 
with the series from June 2010 until March 2015. As follows from Figure 10, the 
standard error under the bivariate model is slightly smaller compared to the standard 
error under the univariate model if both models are applied to series of equal length, 
as expected given the strong and significant positive correlation between the trend 
disturbance terms of both series. If, however, the univariate model is applied to the 
series available from December 2000, then the standard errors for the smoothed 
estimates under the univariate model are slightly smaller compared to the bivariate 
model as follows from Figure 11.  

In conclusion it follows that the bivariate model detects a strong correlation between 
the CCI and SMI series. Using the SMI series as an auxiliary series slightly improves the 
precision of the model based estimates for the CCI. Since the series of the CCI is nine 
years longer than the SMI series, the increased precision obtained with the auxiliary 
series is compensated in the univariate model with the additional information in the 
CCI series available before 2010. 



21 

0

0.5

1

1.5

2

2.5

20
11

(1
)

20
11

(4
)

20
11

(7
)

20
11

(1
0)

20
12

(1
)

20
12

(4
)

20
12

(7
)

20
12

(1
0)

20
13

(1
)

20
13

(4
)

20
13

(7
)

20
13

(1
0)

20
14

(1
)

20
14

(4
)

20
14

(7
)

20
14

(1
0)

20
15

(1
)

CCI trend+int. biv. CCI direct CCI trend+int. univ.

Figure 10: CCI comparison of standard errors direct estimates and smoothed trend plus 
intervention under the bivariate and univariate model for CCI if both models are 
applied to a series of equal length (June 2010-March 2015) 
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Figure 11: CCI comparison of standard errors direct estimates and smoothed trend plus 
intervention under the bivariate and univariate model for CCI if the univariate model is 
applied to the complete CCI series (December 2000) 
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5. Discussion 

For decades national statistical institutes relied on probability sampling in the 
production of official statistics. This approach is based on a sound theory to draw valid 
statistical inference for large finite target populations based on relatively small random 
samples. Over the last decades more and more alternative data sources, such as  
administrative and big data, have become available and the question is raised how to 
use these data sources in the production of official statistics. An important question is 
how results obtained with these sources can be generalized to an intended finite target 
population. Since the data generating process is generally unknown, it is not obvious 
how to draw valid inference with such data sources.  

In this paper the question is addressed how administrative and big data sources can be 
used in the production of official statistics. In the most extreme approach survey data 
are replaced by related alternative data sources, running the risk of introducing e.g. 
selection bias. Since most surveys are conducted repeatedly, a time series modelling 
approach is proposed to investigate to which extent related alternative data sources 
reflect a similar evolution compared to the series obtained with a repeated survey. 
With a multivariate state space model, the correlation between the underlying 
unobserved components of both series can be modelled. In the case that components 
of the time series model are cointegrated there are strong indications that both data 
sources are driven by the same underlying factor. This could be used as an argument 
that an alternative source can replace existing surveys since they reflect the same 
evolution of a process, generally at a different level.  

The theory underlying probability sampling for finite population inference is stronger 
than reliance on the concept of cointegration. Series obtained from social media are 
selected by maximizing the correlation with the series from the sample survey. There is 
no guarantee that this correlation is based on true causality and that the correlation 
will remain to exist in the future. Sampling theory, in contrast, provides a rigid 
mathematical theory showing that under a correct sampling strategy, i.e. the right 
combination of a probability sample with an approximately design-unbiased estimator, 
results in valid statistical inference for intended target populations. There are of course 
also issues with survey sampling. For exampling the continuously declining response 
rates undermine the validity of this approach. Another problem is mode related 
measurement bias, which makes data obtained in mixed mode surveys less 
comparable.  

Even in the case of cointegrated series, an extensive model evaluation, e.g. by some 
form of cross validation, will be required to assure that the alternative data source is a 
valid replacement. See in this context also Eichler (2013) for a discussion about the use 
of Granger causality for causal inference in multiple time series data. Instead of 
replacing a repeated survey for related data sources, they can be used in a multivariate 
time series modelling approach as an auxiliary series to improve the precision of the 
direct estimates obtained with a repeated survey. The time series model applied in this 
paper, initially proposed by Harvey and Chung (2000), is a generic approach for a 
model-based estimation procedure for repeated surveys.  

In the application to the CCI, the time series modelling approach does not decrease the 
variance of the direct estimator. The reason is that the standard error of the time 
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series model reflects the sampling error and the white noise of the population 
parameter. The standard error of the direct estimator only reflects the sampling error. 
In the case of the CCI the variance component of the white noise of the population 
parameter is as large as the variance of the sampling error. The state space approach is 
still useful for producing official figures of the CCI, since it filters a more stable trend of 
the respondents opinion about the economic climate from the observed series of 
direct estimates. Using the SMI as an auxiliary series in a bivariate state space model 
slightly reduces the standard error of the model estimates of the CCI. However, since 
the available series of the SMI is relative short, the reduction obtained with this 
auxiliary series does not outweigh the loss of information in the CCI series that is 
observed in the period before the SMI became available.  From this, it can be 
concluded that the CCI and SMI measure different phenomena. However since both 
series reflect a similar evolution and social media is rapidly available, the SMI could be 
an interesting index to get an indication of the sentiment of the Dutch population in 
near real time. 
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Explanation of symbols

 Empty cell Figure not applicable
 . Figure is unknown, insufficiently reliable or confidential
 * Provisional figure
 ** Revised provisional figure
 2015–2016 2015 to 2016 inclusive
 2015/2016 Average for 2015 to 2016 inclusive
 2015/’16 Crop year, financial year, school year, etc., beginning in 2015 and ending in 2016
 2013/’14–2015/’16 Crop year, financial year, etc., 2013/’14 to 2015/’16 inclusive
 
  Due to rounding, some totals may not correspond to the sum of the separate figures.
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